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Abstract. Most population viability analyses (PVA) assume that the effects of species
interactions are subsumed by population-level parameters. We examine how robust five
commonly used PVA models are to violations of this assumption. We develop a stochastic,
stage-structured predator–prey model and simulate prey population vital rates and
abundance. We then use simulated data to parameterize and estimate risk for three
demographic models (static projection matrix, stochastic projection matrix, stochastic vital
rate matrix) and two time series models (diffusion approximation [DA], corrupted diffusion
approximation [CDA]). Model bias is measured as the absolute deviation between estimated
and observed quasi-extinction risk. Our results highlight three generalities about the
application of single-species models to multi-species conservation problems. First, our
collective model results suggest that most single-species PVA models overestimate extinction
risk when species interactions cause periodic variation in abundance. Second, the DA model
produces the most (conservatively) biased risk forecasts. Finally, the CDA model is the most
robust PVA to population cycles caused by species interactions. CDA models produce
virtually unbiased and relatively precise risk estimates even when populations cycle strongly.
High performance of simple time series models like the CDA owes to their ability to effectively
partition stochastic and deterministic sources of variation in population abundance.

Key words: corrupted diffusion approximation; extinction; parameter estimation; population cycles;
population viability analysis; predator–prey; projection matrix; species interactions; stage structure;
stochasticity; time series; vital rate.

INTRODUCTION

Demographic rates for single species depend on

numerous ecological processes including intrinsic factors

(physiological constraints on longevity and fertility) and

the effects of environmental variation and other species on

these intrinsic factors. While environmental variation is

incorporated routinely into demographic studies (Lande

1993, Lande et al. 2003), the effects of species interactions

on vital rates of a focal population are not. For example,

population models used to manage endangered and/or

commercially harvested populations often ignore species

interactions (Sinclair et al. 1998, Essington 2004, Sabo

2005). In doing so, one assumes that the vital rates in a life

table or a time series of abundance for a single, focal

species represent an adequate fingerprint of all of the

dynamics embodied in one or many species interactions. In

this way, the effects of species interactions are simplified

and subsumed by population parameters. Most conserva-

tion biologists would agree that this assumption rarely

holds in the real world, yet little has been done to quantify

the bias introduced when applying a single-species model

to a population experiencing strong feedbacks through

species interactions. In this paper, we ask: ‘‘Howwrong are

estimates of extinction risk from single-species models that
ignore the influence of interactions with other species?’’

One potential source of bias introduced by species
interactions when implementing PVA is the temporal
variation in vital rates and abundance induced by the
species interaction itself. For example, predators may
cause prey populations to cycle either as a direct result of
predation or as an interaction between predation and a
variable resource supply for the prey species (Sinclair and
Gosline 1997, Stenseth et al. 1998, 1999, Kendall et al.
1999, Turchin et al. 1999, Krebs et al. 2001, Turchin and
Hanski 2001, Sinclair et al. 2003). In addition to this
deterministic source of variation, environmentally driven
variation in predator population abundance can interact
with oscillations in prey population abundance (Sabo
2005). Thus, PVA simplifies a dynamic process (the
species interaction) into a more static one (constant vital
rates or population growth parameters) by assuming that
population-level parameters subsume the influences of
species interactions. The degree to which a PVA
oversimplifies this dynamic process and thereby obscures
estimates of extinction risk may in turn depend on the
type of PVA model used as well as the quantity and
quality of data available when implementing the PVA.

To quantify the bias in risk estimates caused by
predator–prey dynamics, we develop a stochastic, stage-
structured predator–prey model. This model is first used
to generate population data appropriate for five
commonly used PVAs (three demographic and two time
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series models). These PVA models include (1) diffusion
approximation (DA), (2) corrupted DA (CDA), (3)
static projection matrix (StaPM), (4) stochastic projec-
tion matrix (SPM), and (5) stochastic vital rate matrix
(SVR). In all cases, PVA models were parameterized
using 15 consecutive years of data (abundance data,
projection matrices, or vital rates and their distribu-
tions). We then use simulated data to ask which PVA
approach gives the most reliable risk estimates for a prey
population interacting strongly with a predator. We
examine predation because predators are known to
cause cycles in prey dynamics—a potential source of
bias confounding PVA interpretations. Moreover, in-
troduced predators are a global threat to native prey
population viability (Sabo 2005).
The intensity of predation is known to cause nonstruc-

tured models of predator–prey interactions to shift
between stationary and oscillatory regimes (Beddington
et al. 1975, Sabo 2005). In this vein, we ask two more
pointed questions about the effect of predator–prey
dynamics on PVA risk forecasts: (1) Do predator–prey
oscillations bias risk estimates fromfive commonly applied
PVA models in different ways? And, (2) Do these PVA
models differentiate between or confound cycles (deter-
ministic variation) and stochastic sources of variation?

METHODS

Overview

To understand the biases associated with applying
various PVA models to populations experiencing strong
species interactions, we employed a split-sample valida-
tion approach using simulated data (e.g., Meir and
Fagan 2000, Sabo et al. 2004, Gerber et al. 2005). In this
paper, this split-sample validation involved three steps
(Fig. 1): (1) data generation, (2) parameter estimation,
and (3) risk forecasting, and quantification of model bias
and precision. Our goal here was to compare the relative
bias of five different PVAmodels in estimating the risk of
population declines, or ‘‘quasi-extinction’’ risk. To do
this, we first simulated 15 years of data appropriate for
each type of PVA. These data consisted of vital rates,
projection matrices (emergent properties of vital rates)

and time series of abundance for the prey species.
Second, we used each type of data to estimate population
parameters for a particular PVA model and then
simulated population data for 15 additional years using
the ‘‘estimated’’ parameters. Finally, we calculated the
risk of an 80% decline in abundance using these PVA
simulations and compared this ‘‘estimated’’ risk to the
real risk. Here real risk was calculated by simulating 15
additional years of population abundance data using the
‘‘real’’ parameters (those used in the first step) but from
the same starting abundance used in the PVA simula-
tions. We then calculated the error in each PVA
approach as the difference between estimated and real
risk. These steps were repeated 1000 times generating a
distribution of error in risk estimation. Bias (median
error) and precision (dispersion of error) were then used
to assess PVA model efficacy. We describe each of these
steps in more detail in the following subsections.

Step 1: Simulating structured population data

for a predator–prey interaction

We developed a stochastic, stage-structured, preda-
tor–prey model based on a similar model (Barbeau and
Caswell 1999), but extended by considering explicit
feedback between predator and prey species via a prey-
dependent predator recruitment function. The model
followed the general form

Nðt þ 1Þ ¼ A
ðtÞ
N 3 NðtÞ ð1aÞ

Cðt þ 1Þ ¼ A
ðtÞ
C 3 CðtÞ ð1bÞ

where N(t) and C(t) are vectors representing the abun-
dance or density of individuals at time t, in each of three
stages and A

ðtÞ
N and A

ðtÞ
C are population projection matrices

for prey and predators, respectively, in year t [i.e., (t) is not
a power function] (see Eqs. 2). In these matrices, we
incorporated density dependence in prey fecundity (as
u[N(t)]), environmental stochasticity in mortality for both
species (as eðtÞN or eðtÞC ), and a prey-dependent type II
functional response (as vi[N(t), C(t)] or wi[N(t), C(t)], for
prey and predators, respectively), where fi and Fj are the

________________________________

AN¼

f1 3 u½NðtÞ� f2 3 u½NðtÞ� f3 3 u½NðtÞ�

min 1;
�

1� v1½NðtÞ;CðtÞ� þ eðtÞN

�n o
0 0

0 min 1;
�

1� v2½NðtÞ;CðtÞ� þ eðtÞN

�n o
min 1;

�
1� v3½NðtÞ;CðtÞ� þ eðtÞN

�n o
2
6664

3
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ð2aÞ

AC¼

F1 3 w1½NðtÞ; CðtÞ� F2 3 w2½NðtÞ; CðtÞ� F3 3 w3½NðtÞ; CðtÞ�

min 1; 1� m1 3 w1½NðtÞ; CðtÞ� þ eðtÞC

n oh in o
0 0

0 min 1; 1� m2 3 w2½NðtÞ; CðtÞ� þ eðtÞC

n oh in o
SC3

2
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ð2bÞ
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maximum fertilities of the prey of stage i and the

predator of stage j, respectively; mj is the stage-specific,

density-independent, mortality rate of the predator; and

SC3 is the fixed survivorship of the third stage class of

the predator. The numerical response of the predator

was constrained to its functional response by linking

fecundity and stage 1 and 2 survival to the stage-specific

encounter and kill rates of prey (via wi[N(t), C(t)]).

Predator fecundity was further constrained between 0

and Fj. We constrained values for prey (all three stages)

and predator (stage 1–2) survival rates, between 0 and 1

(e.g., via minf1, (1� vi[N(t), C(t)]þ eðtÞN )g and minf1, [1
� (mj 3 wj[N(t), C(t)] þ eðtÞC )]g, respectively) to prevent

values of this vital rate from exceeding 1 during years

when large positive random variates (eN or eC) were

drawn. Finally, low fixed values of stage 3 survival for

predators (SC3) resulted in more consistently stable

predator–prey interactions.

Implementation of density dependence.—In our model,

prey experience density-dependent fertility, with a

maximum fertility level ( fi) achieved only at low density

and adjusted (downward) as a function of total prey

population size. The strength of this density dependence

is directly related to the shape parameter, v (Appendix

A). In our model, we fixed v at a constant value across

all prey stages such that variation in fecundity among

age classes (i) varied only with fi, giving

ui½NðtÞ� ¼ u½NðtÞ� ¼ exp �v 3 sum½NðtÞ�f g: ð3Þ

By contrast, predator fertilities increase to their
maximum values (Fj, where j is the age class) as a

function of the per capita, stage-specific number of kills,
K
ðtÞ
j and a scaling constant, c (Appendix A):

wj½NðtÞ;CðtÞ� ¼ exp½�cK
ðtÞ
j �: ð4Þ

More specifically, we defined K
ðtÞ
j as

K
ðtÞ
j ¼

X3

i¼1

li; j 3 N
ðtÞ
i

C
ðtÞ
j

" #
ð5Þ

where N
ðtÞ
i and C

ðtÞ
j are stage-specific densities of prey

and predator populations at time t, and li, j is the stage-
specific mortality rate inflicted by predator stage j on
prey stage i.

Implementation of a type II functional response.—Prey
were killed and removed from the population as a
saturating function of stage-specific density via a type-II

functional response where

mj½NðtÞ;CðtÞ� ¼ li; j: ð6Þ

FIG. 1. Schematic showing the methods used to validate five population viability analyses (PVA) models when confronted with
data driven by a species interaction. This process is replicated 1000 times for each parameter set of interest. The five PVA models
are as follows: the diffusion approximation (DA), the corrupted diffusion approximation (CDA), the static projection matrix model
(staPM), the stochastic projection matrix model (SPM), and the stochastic vital rate model (SVR). N16 is defined as the first year of
the prediction interval, one year after the 15-year fitting interval (hence, N in year 16).

July 2007 1545SPECIES INTERACTIONS AND PVA



We implemented this saturating functional response as

Holling’s disk equation (Holling 1966:51 [in Barbeau

and Caswell 1999:270]). Briefly, the mortality rate
experienced by prey class i as a result of predation by

predator class j is

li; j ¼
ðajTj þ bjÞCjNi

1þ
X

i

ajhi; jai; jNi

ð7aÞ

where Tj is the total foraging time available for predator

class j, hi, j is the handling time of predator class j when

handling prey class i, ai, j is the probability of successful

capture of prey class i by predator class j (i.e.,
P[die j enc]i, j in Barbeau and Caswell 1999). The

parameters aj and bj relate the body size (radii) and

movement velocities of predators and prey to encounter
rates of prey:

aj ¼ 2ðV2
j þ U2

i Þ
1=2ðqj þ riÞ ð7bÞ

bj ¼ pðqj þ riÞ2 ð7cÞ

where Vj and Ui are the movement velocity and qj and ri
the body size (radius) of the predator and prey species of

stage j or i, respectively (see Barbeau and Caswell

1999:271 for more detail). Below we create a range of

deterministic variation experienced by prey populations
as a result of the predator–prey interaction by altering

values of a single parameter, qj, the predator body

radius.

Implementation of environmental stochasticity.—We
consider stochasticity in the mortality of predator and

prey species. Specifically, stochastic mortality elements

(eðtÞX¼N;C) in the model were drawn from a beta
distribution (as per Caswell 2000),

eðtÞC ; e
ðtÞ
N ¼ Bða; bÞ ð8Þ

where a and b are transformations of the mean, mx¼i, j,
and variance, var(mx¼i, j), of the stage-specific (indicated

by lowercase x) mortality rates (Morris and Doak 2002):

a ¼ mx 3
mx 3ð1� mxÞ

varðmxÞ
� 1

� �
ð9aÞ

b ¼ ð1� mxÞ3
mx 3ð1� mxÞ

varðmxÞ
� 1

� �
: ð9bÞ

Step 2: Application of PVA to simulated data

Key features of PVA models examined with simulated

data.—There are two broad categories of single-species

PVA models—demographic PVA and time series PVA
(Morris and Doak 2002). Demographic PVA models

include deterministic (hereafter, ‘‘static’’) and two types

of stochastic models based on projection matrices (Doak

et al. 1994, Heppell et al. 1996, 2000, Mills et al. 1999,
Caswell 2000, Wisdom et al. 2000, Morris and Doak

2002). Briefly, these models use empirical estimates of

either stage-specific vital rates (i.e., fertility, survival) or

projection matrix elements (emergent properties of the

vital rates) to calculate the population growth rate (kt)
and extinction probabilities over a desired time horizon.

In static demographic PVA models, vital rates, and thus

the projection matrix elements, do not vary in time (as

only one projection matrix is used). By contrast,

stochastic demographic PVA models incorporate envi-

ronmental variability in one of two ways—by drawing

whole projection matrices at random from a collection

of annual, stage-specific, vital rates or by drawing the

vital rates from distributions reflecting the means and

variances of these rates measured in the field (cf. Morris

and Doak 2002: Chapter 8). Below, we refer to these two

varieties of stochastic demographic PVA approaches as

stochastic projection matrix and stochastic vital rate

PVA models, respectively.

Time series PVA models also come in several varieties.

The most basic of these is the ‘‘diffusion approximation’’

(hereafter, ‘‘DA model’’ [Lande and Orzack 1988,

Dennis et al. 2001]) and the ‘‘corrupted DA’’ model

(Holmes 2001, 2004, Holmes and Fagan 2002, Lindley

2003, Staples et al. 2004). Both of these time series

models rely on abundance data (15–20 years) to estimate

critical growth parameters and forecast risk. The DA

model estimates two parameters, the mean (l) and

variance (r2
p) of annual growth rates, kt. The variance in

the annual growth rate, r2
p, is assumed to be driven

solely by environmental variation in the environment

(i.e., ‘‘process error,’’ subscript p). By contrast, the

corrupted DA (or CDA) model also estimates the mean,

l, of the annual growth rates but partitions variation

due to two sources: process error (r2
p) and other sources

of non-process variation (r2
np) that include among other

things, observation error.

Estimation of population parameters in PVA models.—

We parameterized the five PVA models using 15 years of

population data for the prey species (vital rates,

projection matrices, or abundance data). We chose a

15-year fitting interval as it is the minimum number of

abundance estimates required by the most data-hungry

time series PVA we analyze: the corrupted diffusion

approximation (Holmes 2004). Thus, for each time

series, we recorded the total population size, stage-

specific population sizes, and the elements of the

projection matrix at each time step. In this way, our

simulation model provided data amenable to viability

analysis by both time series and demographic approach-

es to PVA. With these data (time series of abundance

and projection matrices), we then estimated population

growth parameters by applying each PVA model to the

same data.

Estimation of parameters for matrix-based, demo-

graphic PVAs was straightforward given that our

population model yielded the actual data needed for

the PVA: annual projection matrices for the prey

population (Eq. 2a). These projection matrices (and

their elements) were used to estimate k(t) and the means

and variances of projection matrix elements (i.e., non-
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zero elements in Eq. 2a) from which random projection

matrices could be constructed and k(t) values calculated
(Morris and Doak 2002). For the static projection

matrix model (staPM), we extracted a single projection

matrix and used this to calculate k(t). For the stochastic
projection matrix model, an entire projection matrix was

drawn randomly from the first 15 years of data and used

to calculate k(t) at each time step. Finally, in the

stochastic vital rate model, we calculated a mean and

variance for each element in the projection matrix based

on 15 years of data for each element. We then generated

unique projection matrices and k(t) values at each time

step by drawing random fecundity and survival values

from distributions of these elements based on calculated

means and variances. Here we assumed a log-normal

distribution for variation in fecundity and a beta

distribution for variation in survival (following Caswell

2000, Morris and Doak 2002).

The static projection matrix PVA (StaPM) uses only a

subset of the total time series (a single projection matrix),

and as a result, predictions from these models are highly

dependent on ‘‘window placement’’ and the idiosyncrasies

of the sequence of the year analyzed (i.e., the sampling

window). For example, years of favorable conditions

should produce underestimates, and years of unfavorable

conditions should produce overestimates of true risk. To

control for bias caused by nonrandom window selection

of sequential projection matrices, we replicated the

parameterization of StaPM model using each of the 15

simulated projection matrices (single projection matrix

used for all time steps, 15 total models analyzed). In this

way, our implementation of StaPM models mirrors their

implementation in the real world, where only a single

projection matrix is available, without serendipitously

emphasizing idiosyncratic projection matrices.

When using the two time series models (DA and

CDA), we estimated population parameters from annual

abundance data [e.g., N(t)]. The diffusion approxima-

tion is a two-parameter model (Lande and Orzack 1988,

Dennis et al. 1991)

Xðt þ 1Þ ¼ XðtÞexpðlþ etÞ et ; Normð0;r2
DAÞ ð10Þ

where X is the population size at time t and l and r2
DA

are parameters describing the average and variance of

the annual increase in population size:

kðtÞ ¼ Xðt þ 1Þ
XðtÞ :

In the simplest case, where data consist of annual censuses

with no missing years, l and r2
DA can be estimated as the

mean and variance of the time series of kt

l ¼ mean ln
Xð2Þ
Xð1Þ

� �
; . . . ln

XðtÞ
Xðt � 1Þ

� �� �� 	
ð11aÞ

r2
DA ¼ var ln

Xð2Þ
Xð1Þ

� �
; . . . ln

XðtÞ
Xðt � 1Þ

� �� �� 	
ð11bÞ

where X(t) is the prey population size in census year t [i.e.,

N(t)]. We use r2
DA to denote the process error estimate

from the DA model in order to distinguish it from CDA

estimates of r2
p and r2

np. These estimated parameters can

then be used to forecast future population dynamics via

Eq. 10. Dennis et al. (1991) give analytic solutions for the

probability of population decline to a predetermined

threshold level (e.g., probability of 80% decline, or P80) in

the last year of a forecasting interval. Analytical solutions

for declines (e.g., P80) in any year across the forecasting

interval are more cumbersome (Sabo et al. 2004); thus we

calculate these declines numerically via Eq. 10 and

parameters estimated from independent data using Eq.

11a, b.

The CDA model improves on the simple DA by

estimating three parameters, l, r2
p, and r2

np, where r2
p is

process error (i.e., environmental stochasticity) and r2
np

is a second source of error that ‘‘corrupts’’ observations

of the true abundance (Holmes 2004). The CDA is a

state space model:

xðt þ 1Þ ¼ xðtÞ þ lþ nðtÞ nðtÞ; Normð0;r2
pÞ
ð12aÞ

yðtÞ ¼ xðtÞ þ bþ gðtÞ gðtÞ; Normð0;r2
npÞ:
ð12bÞ

In most applications, this model distinguishes between

the true population size, X(t), and the observed

population size, Y(t), where x(t) ¼ ln[X(t)] and y(t) ¼
ln[Y(t)]. True population abundance [x(t)] changes with

the mean population growth rate (l) and random

variation [n(t)] determined by the variance in the mean

growth rate,r2
p. Observed abundance levels [y(t)] are

corrupted by bias (b) and non-process sources of error

[g(t)]. The most common application of state space

models is to quantify measurement or ‘‘observation’’

bias and error (Holmes 2004). In this paper, we ignore

extrinsic sources of bias and use r2
p and r2

np to

differentiate between environmental variation and in-

trinsic variation in prey abundance driven by predator–

prey cycles (i.e., b ; 0, and r2
np ; oscillation amplitude).

There are three general approaches to estimating

CDA parameters: a Kalman filter (Lindley 2003),

restricted maximum likelihood (ReML) methods (Sta-

ples et al. 2004), and the slope method (Holmes 2004). In

this paper, we adopted the slope method. Briefly, we first

transform ‘‘counts’’ (e.g., Y(t), or N(t) in Eq. 1a, b) into

three-year running sums to reduce bias and variability in

k(t) due to oscillations arising from non-stable age

structure (Holmes 2001, Holmes and Fagan 2002). We

then estimate l as

lR ¼ mean ln
R2

R1


 �
; . . . ln

Rt

Rt�1


 �� �� 	
ð13Þ

where R(t) is the running sum transform of N(t). Second,

we note that the DA model ignores all non-process

error, such that
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rDA ¼ rp þ rnp: ð14Þ

One key distinction between process and non-process

sources of variation is that the former (n(t)) feeds back
on x(t) and thus, variance in k(t) grows larger with time

with r2
p. By contrast, g(t) does not affect x(t) and thus,

k(t) does not grow with r2
np over time. Thus, we estimate

r2
p as the slope of the variance in k(t) vs. lag (s)

(following Holmes 2001, 2004). Finally, we estimated

r2
np as the difference between r2

DA and r2
p via Eq. 14.

Step 3: Quantifying bias in PVA models

via split-sample validation

For the four stochastic PVA models, estimated

growth parameters were used to simulate population

abundance (1000 replicate realizations) over 15 years

(years 16–30). Similarly, we projected 1000 prey

populations 15 years into the future (years 16–30) using

the ‘‘real’’ parameters (i.e., those used to generate years

1–15) but starting from the same abundance levels as

those simulated with the estimated parameters. We

calculated probabilities of 80% declines in abundance

(P80) for both the ‘‘real’’ population (i.e., the ‘‘observed’’

values from the control, above) and those ‘‘estimated’’

by each PVA model. A quasi-extinction threshold

representing an 80% decline in abundance (P80) was

chosen based on similar metrics used by the World

Conservation Union (IUCN) to classify populations on

the Red List of threatened and endangered species

(IUCN 2001). Thus we evaluate the ability of each

model to predict population size as well as one of the

most commonly used risk metrics for endangered species

management (see also Sabo et al. 2004, Gerber et al.

2005). Finally, we calculated PVA model bias for each

replicate realization as the difference between estimated

and observed population decline (i.e., P̂80� P80). Thus,

positive errors indicate conservative bias, and negative

errors indicate overly optimistic risk forecasts (as in

Sabo et al. 2004).

Step 4: Implementing two tests of PVA model efficacy

We used the split-sample validation approach de-

scribed in the preceding section in two complimentary

ways. First, we contrasted the bias and precision of PVA

models for two parameter sets (Appendix B) represent-

ing either stationary deterministic dynamics (no oscilla-

tions) or oscillatory dynamics. We hypothesized that

PVA models would perform well in spite of predator–

prey dynamics as long as predators do not induce cycles

(or other deterministic variation) in prey dynamics. To

test this hypothesis, we compared bias and precision in

P̂80 for 1000 replicate realizations among the five PVA

models when prey dynamics are either stationary or

oscillatory in nature. Second, we quantified the ability of

the CDA to differentiate between deterministic and

stochastic variation and validate the high performance

of this model across a wider range of predator–prey

dynamics. Here, we hypothesized that CDA models

would generate unbiased and relatively precise estimates

of risk (P̂80) in spite of predator–prey cycles because

CDAs effectively differentiate between deterministic and

stochastic variance sources in prey time series of
abundance (Holmes 2004). More specifically, we pre-

dicted that CDA estimates of r2
np should track the

deterministic variation associated with predator–prey

oscillations and that CDA risk estimates (based on
better estimates of r2

p) would be both unbiased and

relatively precise. We measured the deterministic varia-

tion in prey abundance as the ‘‘coefficient of intrinsically

derived variance’’: the CV of prey abundance over 1000

years (after a 4000 year burn-in) when var(mx¼i, j) ¼ 0.

Starting with the same arbitrary parameter values
from our oscillatory parameter set (Appendix B,

oscillatory parameter set), we created a gradient of

increasing deterministic variation in prey population

abundance by increasing values for the body radius of
stage-3 predators (q3) from 1.75 to 3.75. This gradient in

deterministic variation was created under two levels of

environmental stochasticity (var(mx¼i, j) ¼ 0.006, 0.012).

With no environmental stochasticity (var(mx¼i, j) ¼ 0),

changes in q3 produced a wide range of deterministic
model behavior (Fig. 2a), including stable equilibria (q3
; 1.75–1.91), chaotic oscillations (e.g., q3 ; 1.95–2.63)

and four- and eight-point limit cycles (e.g., q3 ; 2.75–

3.63). Moreover, the coefficient of variation of prey
abundance (i.e., the coefficient of deterministic varia-

tion) and the variance in log-transformed annual growth

rates of prey populations, i.e.,

var ln
Ntþ1

Nt


 �� �

increased with q3 (Fig. 2b, c). The addition of process
error increased the variance in ln k experienced by prey

populations but not the relative effect of q3 on this

variation. Values for ln k increased at a similar rate in

deterministic and stochastic model runs and between the
two levels of stochasticity examined (compare slopes in

Fig. 2c). Values for ln k produced by our models were

similar to the highest values estimated for real popula-

tions using density-dependent PVA approaches (e.g.,

checkerspot butterfly r2
p ¼ 0.65 [Foley 1994; see Sabo et

al. 2004 for summary]). Thus the populations we

analyzed represent some of the noisiest realizations

one might encounter in the real world, but for our data,

we know exactly which components of this noise owe to
predators and the environment.

We note here that the relative importance of predator
body size in determining the stability of stage-structured

predator–prey dynamics in our model (Eq. 2a, b) is

beyond the scope of this paper. Instead, we use predator

body sizes simply to create a range of deterministic
conditions under which a PVA may be administered so

that we can better understand the influence of the

strength of predator–prey oscillations on the efficacy of

PVA. Increasing q3 leads to increased search efficiency of

the predator (via a and b), increased death rates of prey
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(via li, j) and increased deterministic variation in prey

population dynamics. Increased deterministic variation

in turn, sets the stage for understanding key properties of

the corrupted diffusion approximation model for PVA.

RESULTS

Single parameter sets: predator–prey oscillations

bias some, but not all PVA models

The stationary parameter set led to time series typified

by small stochastic variation about a stationary equi-

librium for both the prey and predator (Fig. 3a). By

contrast, the oscillatory parameter set led to strong and

somewhat regular cycles in predator and prey abun-

dance (Fig. 3b). Thus, changes in abundance (and thus

vital rates and transition matrices) are relatively

constant from year to year under a stationary regime

but highly variable under an oscillatory regime.

Quasi-extinction risk was negligible (P80 , 5%) for the

real population (i.e., the control) under both stationary

and oscillatory regimes. All five models predict this

precisely and accurately under a stationary regime (Fig.

4a). By contrast, all PVAmodels except the corrupted DA

overestimate extinction risk as measured by P80 when prey

populations cycle as a result of strong predation

(oscillatory regime, Fig. 4b). The DAmodel overestimates

risk by as much as 40%. Static demographic PVA models

produce risk estimates that are either 100% or 0% (i.e.,

inter-quartile range of 0–1), depending on the year in

which the projection matrix is extracted from the original

time series. On average, bias (i.e., median error) is much

lower and still conservative, for the stochastic demo-

graphic PVA models (vital rate or projection matrix).

However, these models give highly imprecise estimates of

risk, some giving errors as high as 90%. Moreover,

demographic PVAs are more likely to underestimate P80,

than time series models given the same data. In summary,

only the corrupted DA model accurately (and precisely)

estimated P80 for both stationary and cycling populations

interacting with a predator. Below we explore the

generality of low bias and high precision of the CDA

model across a wider range of predator–prey dynamic

behavior.

CDA performance when confronted with deterministic

and stochastic sources of variation

An increase in the body radius of stage-3 predators

(q3) led to increases in prey death rates and concomitant

increases in deterministically driven variation in prey

population dynamics (Fig. 2b). Environmental stochas-

ticity [via var(mx¼i, j)] further increases variation in prey

abundance (Fig. 2c). Time series for most of this

parameter space are noisy (Fig. 5), some remaining

FIG. 3. Population trajectories for prey (black line) and
predator (gray line) populations generated by single representative
(a) stationary and (b) oscillatory parameter sets (see Appendix B).

FIG. 2. (a) Bifurcation diagram showing deterministic
variation (no process error) in prey abundance (N) as a
function of q3, the body radius of predators in stage class 3.
Body size is directly related to the encounter rate between prey
and predators in stage class 3. For each value of q3, we plot
1000 values for total prey population abundance following a
4000-year burn in order to eliminate transient dynamics. (b)
Coefficient of deterministically derived variance in prey
abundance (no process error) as a function of q3. (c) Variance
in ln k (i.e., var[ln(Nt�1/Nt)]) as a function of deterministic
variation brought on by changes in q3 and three levels of
process error (r2

p ¼ 0, line with solid circles; r2
p ¼ 0.006, gray

line; and r2
p ¼ 0.012, black line).
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close to a stationary equilibrium (i.e., where q3 is low)

and others varying more widely, and crossing our quasi-

extinction threshold more readily [i.e., high q3 and high

var(mx¼i, j)]. In all cases, variation is high and in part

driven by deterministic in addition to stochastic sources

of variation. True quasi-extinction risk (P80) is corre-

spondingly much higher than in our previous analysis,

ranging from 0 to 99%. Here we evaluate how well the

CDA model attributes deterministic and stochastic

sources of variation to non-process (r2
np) and process

error (r2
p) components of the model. If the CDA

effectively attributes deterministic variation to r2
np, this

would explain the high accuracy and precision of risk

forecasts made by this model in spite of predator

induced variation in prey abundance.

CDA estimates of r2
np increased with the coefficient of

intrinsically derived variance (Fig. 6). This result was

nearly identical at both levels of process error added to

prey and predator vital rates [var(mx¼i, j)]. In both cases,

r̂2
np are high even when intrinsic variation is near zero.

We hypothesize that the CDA model attributes both

deterministic variation and variation caused by the

interaction between stochastic and deterministic sources

of variation to r2
np. For example, environmental stochas-

ticity (via var(mx¼i, j)) may prolong otherwise transient

oscillations in prey abundance, and these oscillations are

interpreted by CDA models as r2
np, rather than a third

source of variance associated with the interaction

between r2
p and r2

np. In contrast to a relatively steep

increase in r̂2
np with the coefficient of intrinsically derived

variance, estimated levels of process error in prey

abundance (r2
p) were more nearly identical across this

range of deterministic variation in prey abundance,

reflecting the constant source of environmental variation

added to prey and predator vital rates via var(mx¼i, j).

As a result of effective partitioning of deterministic

and stochastic sources of variation (Fig. 6), CDA

estimates of quasi-extinction risk (P̂80) were nearly

unbiased across a 25% increase in intrinsically driven

variation in prey abundance (Fig. 7) and at both levels

of environmental stochasticity added to prey and

predator vital rates. Surprisingly, the inter-quartile

range of CDA quasi-extinction estimates was small

FIG. 4. Raw error in the estimation of the probability of an
80% decline (P80) for each of five commonly used population
viability analyses (PVA) models under the (a) stationary and (b)
oscillatory parameter sets. PVA models are the diffusion
approximation (DA), the corrupted DA (CDA), static projec-
tion matrix PVA (StaPM), and stochastic demographic PVAs
based on projection matrices (SPM) or vital rates (SVR). Boxes
are medians (middle line) and upper and lower quartiles,
whiskers are 1.53 the range contained by the upper and lower
quartiles, and crosses indicate outliers. Positive and negative
errors indicate over- and underestimation of P80, respectively.

FIG. 5. Representative time series of abun-
dance for prey populations (Nt). (a) Low
stochastic variation [var(mx¼i, j) ¼ 0.006; see Eq.
9a, b] and low deterministic variation (predator
body size in stage 3, q3 ¼ 1.75). (b) High relative
stochastic variation [var(mx¼i, j) ¼ 0.012] and
high deterministic variation (q3 ¼ 3.75). In both
panels, we plot the prey population level corre-
sponding to an 80% decline from N1 (the
abundance in year 1). Prey populations were
more likely to reach this quasi-extinction thresh-
old when stochastic and deterministic variation
were simultaneously high.
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suggesting relatively high precision of CDA risk

forecasts as well (Fig. 7).

DISCUSSION

Single-species PVA models assume that the dynamic

effects of one, or many, species interactions experienced

by the focal species are subsumed by fecundity, survival,

or population abundance. Our analyses illustrate how

this practice may oversimplify community level phenom-

ena and bias population forecasts made by some, but not

all, PVA models. Specifically, our results highlight three

observations about the perils associated with blind

application of single-species models to prey populations

whose dynamics are strongly influenced by predation.

First, most single-species PVA models overestimate

extinction risk (e.g., conservative estimation) when

species interactions cause periodic variation or cycles

in abundance (Figs. 2 and 4b). This result is consistent

with other simulation studies that have examined how

cycling (Sabo et al. 2004) or periodic (rather than

FIG. 6. Corrupted diffusion approximation model estimates for non-process error (r2
np, top panels) and process error (r2

p,
bottom panels) as a function of the coefficient of intrinsically derived variance in prey abundance (brought on by changes in q3
[predator body size in stage 3]). The coefficient of intrinsically derived variance is the CV of 1000 prey population sizes for each
value of q3 in Fig. 4. Panels show mean estimates for 1000 replicate realizations (of prey populations) with a given value for q3 and
either low environmental stochasticity [left-hand panels, var(mx¼i, j) ¼ 0.006; see Eq. 9a, b] or high environmental stochasticity
[right-hand panels, var(mx¼i, j) ¼ 0.012].

FIG. 7. Median (thick black line) and 25th
and 75th percentile (thin gray lines) values for
bias in estimates of 80% declines (bias ¼ P̂80 �
P80) as a function of deterministic variation in
prey abundance related to the size of predators in
stage 3 (q3). Panels show results for simulations
with (a) low and (b) high environmental stochas-
ticity in the survival of predator and prey species
[i.e., var(mx¼i, j); see Eqs. 9a, b].
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stochastic) variation in abundance of a single species can

in many cases result in strong overestimation of risk (K.

Buenau, J. L. Sabo, and L. R. Gerber, unpublished

manuscript). Thus, bias in single-species models will tend

to err in favor of conservation, predicting more dire risk

than the target population is likely to experience over

the prediction interval. This conservative bias could

have positive and negative consequences for conserva-

tion efforts. Conservative risk estimates may guarantee

the protection of the target species over a wider range of

conditions; however, erroneous risk estimates may

decrease public confidence in conservation science and

increase conflict between the governmental agencies

responsible for the management of target species and

public stakeholders. The low bias in CDA risk estimates

suggests that some single-species models will provide

relatively accurate risk forecasts even when confronted

with strongly oscillatory data.

Second, not all single-species PVA models are equal

when confronted with a focal population that exhibits

cycles as a result of predation. Static demographic PVAs

give gross over- and underestimates of risk depending on

the period in which the parameters are estimated. Risk

estimates will be overly optimistic when model param-

eters are estimated across years of increasing abundance;

conversely, risk will be overestimated when parameters

are estimated during bust years. Bias is lower and

conservative, and precision is higher for the stochastic

vital rate model. Nevertheless, bias was still significantly

higher for this model than for the CDA.

Third, only the corrupted DA model is able to

adequately differentiate between environmentally driven

variation in mean growth rates, and variation driven by

predator-induced cycling. Thus, the corrupted DAmodel

most consistently produced accurate risk forecasts for

the specific stationary or oscillatory parameter sets

examined here. Moreover, CDA risk estimates are

unbiased and relatively precise across a wide range of

parameter space that includes both high and low

deterministic and stochastic variation in prey abundance.

Why does the CDA work so well?

Corrupted diffusion models are designed to differen-

tiate between process and a non-process source of error:

typically observation error or oscillations related to

departures from stable-age structure. Process error

results from variation in the environment (environmen-

tal stochasticity) and can be detected as an increase in

the variance in ln[N(tþ s)/N(t)] with s, where s is the lag
in years between abundance estimates. For example, the

variance in the log ratio of abundance estimates eight

years apart may be higher than the variance between

abundance estimates two years apart. Non-process

sources of error affect both the numerator and

denominator of ln[N(t þ s)/N(t)] independently of s.
The variance of ln[N(t þ s)/N(t)] with process and non-

process error is then (for s not too large) sr2
p þ 2r2

np.

Thus, the slope and half of the value of the intercept of

the relationship between lag (s, or years between

abundance estimates) and variance in ln[N(t þ s)/N(t)]

give estimates of process and observation error,

respectively (cf. Holmes 2004: Eq. 14). We demonstrate

that CDA viability models differentiated between

predator–prey cycles and environmental stochasticity.

As such, CDAs produced unbiased quasi-extinction

estimates even when predators caused strong variation

in prey abundance. CDA models filtered cycles (as r2
np)

and estimated risk with a more appropriate estimate of

stochastic variation (r2
np).

Generality of predator–prey dynamics analyzed

Our predator–prey model (Eq. 2a, b) is complex but

similar in nature to unstructured deterministic models

used commonly in food web science (e.g., Murdoch and

Oaten 1975, Oksanen et al. 1981, Moore et al. 2004). For

example, the model has prey density dependence and a

type II functional response derived from Holling’s classic

disk equation (Holling 1959). The model also couples

predator fecundity and survival directly to prey consump-

tion. Finally, we add stochasticity to prey and predator

survival rates in a traditional way (Caswell 2000). The

behavior that the model generates is quite broad, ranging

from stationary, but stochastic fluctuations around

equilibrium abundance levels, to limit cycles and chaos

(Fig. 2a). Our results suggest that not all PVA models are

equal when confronted with prey dynamics that are both

oscillatory and stochastic. Predator-induced oscillations

bias estimates of process error in all PVA models accept

the CDA. Moreover, significant shifts in the qualitative

behavior of prey dynamics produce negligible bias and

only moderate imprecision in CDA estimates of P80 (Fig.

7). Thus, while our analysis makes the direct comparison

of all 5 PVA models for only a subset of predator–prey

behaviors (i.e., stationary and oscillatory), our evaluation

of the performance of the CDA model considers a much

broader range of conditions (i.e., true extinction risk).

CDA estimates of risk remain robust despite strong cycles

and chaos in prey dynamics mediated by predation.

Caveats

Our conclusions are limited in scope by at least three

simplifications in our analyses. First, we compared the

performance of all five PVA models under only two sets

of prey dynamics and in both cases the true risk of prey

population decline (P80) is low (;0% and ,2% for the

stationary and oscillatory parameter sets, respectively).

The relative performance of these five models may differ

when this risk is much higher. In our more extensive

analysis of the CDA model, we observed negligible bias

across a wider range of true risks of decline (P80 ; 0–

99%). Thus, our results represent a starting point for

assessing the efficacy of PVA when confronted with

population data drive by predator–prey dynamics.

Specifically, when true quasi-extinction risk is low, most

PVAs will grossly overestimate risk while the CDA will

provide more accurate and relatively precise estimates of
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P80. High accuracy and precision of the CDA is robust

across a wide range of ‘‘true’’ risk.

Second, our analyses ignore the potentially confound-

ing effects of observation error as an additional source

of non-process variation. Of the PVA models examined

here, only two (the corrupted DA and stochastic vital

rate models) are capable of differentiating between

observation and process error. In this study, we found

that the corrupted DA was also capable of distinguish-

ing between environmental sources of variation (i.e., r2
p)

and predator induced variation (as r2
np). Thus, the

efficacy of the corrupted DA may differ when prey time

series are corrupted by both predator–prey cycles and

observation error. It is likely that the inclusion of

observation error in our simulation models would favor

PVA models that require fewer data. Fewer bad data

used to parameterize the PVA produce fewer errors in

forecasting risk. Thus, the four models rank in the

following order in terms of the required number of field

estimates (assuming three age or stage classes as in Eq.

2a, b): static demographic model (six vital rates), DA

model (10 abundance estimates, minimum), the corrupt-

ed DA model (15 abundance estimates, minimum), and

the stochastic demographic model (18 vital rates,

minimum). This suggests that the large differences in

efficacy of the four models observed in this study may be

diminished when one considers the amount of (poten-

tially bad) data required for each. Future studies should

investigate the effects of trade-offs between data

requirements (number of years or vital rates), the

relative magnitude of observation error associated with

field estimates of vital rates and abundance data, and the

costs of collecting either type of data.

Third, our analysis includes interactions between only

two species and does not evaluate the effect of other types

of species interactions (e.g., competition, mutualism). The

net effects (direct and indirect) of interactions with the full

diversity of species comprising the community may either

augment or diminish the bias in risk estimation brought

on by one strongly interacting species. Improvements in

the statistical approaches to analyzing community persis-

tence (Ives et al. 2003) place us in a position to address

questions about the effects of diversity on the persistence

of single species within larger communities.

Conclusion

Population models, including PVA, necessarily sim-

plify the complexity of species interactions (Murdoch et

al 2002, Sabo et al. 2005). This complexity is implicitly

subsumed by vital rates in a population model. Our

results suggest that this practice can be misleading, but

only when the single-species model is itself overly

complex. Vital rates in a six parameter, stage-structured

matrix model do not accurately characterize the dynamic

nature of predator–prey cycles. Surprisingly, a much

simpler (three parameter) statistical description of the

population trend (the CDA model) outperforms more

complex matrix models at characterizing future popula-

tion dynamics as indexed by the risk of quasi-extinction

(P80). Both models assume the wrong process of
population growth, yet the simpler of these wrong
models is more effective at forecasting extinction metrics.

This result lends support to a growing body of theory
advocating simple models to describe complex processes.

For example, Murdoch et al. (2002) demonstrate that
the cycle period for an interaction between a generalist

predator and prey population converges on the range of
periods expected by a single population process. Here, a

simple statistical description of a single-species popula-
tion dynamic (e.g., scaled cycle period) suffices despite
the complications of a predator–prey interaction. In a

similar vein, fisheries models that are fitted to time series
data (e.g., ‘‘inverse’’ models) often provide better

predictions of optimal effort than ‘‘process’’ based food
web models that incorporate more complex species

interactions (Essington 2004). Inverse models describe
trends in data better than process models even if they are
no more biologically correct than process models.

In this paper, a simple inverse model (the CDA)
outperforms more complex process models of single-

species population dynamics (e.g., matrix models) at
forecasting extinction risk. The strength of the simple

model hinges on a trade-off between biological plausi-
bility and descriptive accuracy. CDA models more
accurately describe stochastic and deterministic sources

of variation inherent in a short time series than more
plausible matrix models and this descriptive advantage

leads them to more accurate portrayals of extinction risk.
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APPENDIX A

Detailed descriptions of stochastic stage-structured predator–prey model (Ecological Archives A017-061-A1).

APPENDIX B

Parameter values for stable and oscillatory regimes (Ecological Archives A017-061-A2).
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